
11th Joint Conf. on Math. and Comp. Sci., May 20–22, 2016, Eger, Hungary 1

Checking binary compatibility for modern programming
language

Áron Baráth, Gábor Alex Ispánovics, Porkoláb Zoltán

Eötvös Loránd University, H-1117 Budapest, Hungary

{baratharon,galex,gsd}@caesar.elte.hu

Modern programming languages prefer to support rapid development improved with flexible and
expressive features. It seems languages take more effort in development rather than long-time
support of the code. This trend can be seen in the fact that many languages handles binary
compatibility poorly. In many cases only a very little change can cause serious runtime problems,
like miscalculations and crashes.

We can group binary compatibility issues in several ways. For example, in C [?] and C++ [?]
(and in many other languages) binary compatibility starts when linking multiple objects into an
executable or dynamic library. Using any build system, we can give situations when the built system
will not recognize the dependecies correctly, and the compiler outputs a wrong binary – it is more
likely when system-wide headers are also involved. Furthermore, the same issue can arise when
linking against static libraries. These problems can be avoided with a local database of detailed
information about the types and functions. The problem is getting more uncontrollable when a
client uses dynamic libraries. While in C only the name of the functions and objects (also known as
global variables) are used in static- and dynamic linking, in C++ mangled names are used to link
functions. The mangled names will provide a little more validation when loading a library, but it is
not nearly sufficient. The other aspect of the grouping is the expected incompatibility: obviously,
an interface modification will break the user programs, while modifications are not related to the
interface itself are the most problematic. Many languages cannot handle correctly the second case
due to optimization reasons or due to information loss.

Note that, the problem of the binary compatibility is not limited to languages like C and C++,
but it is a real issue in managed languages as well – for example in Java language. Researches
aimed to identify the possible weakpoints [?], others try to provide a solution for that [?].

In this paper we introduce our experimental programming language, Welltype [?], which is
aimed to present a solution to detect unwanted binary incompatibilities at link-time. Our approach
will not load incompatible programs into the same runtime context.

References

[1] Dietrich, J., Jezek, K., Brada, P.: Broken promises: An empirical study into evolution prob-
lems in java programs caused by library upgrades. Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on.
IEEE, (2014)

[2] Savga, I., Rudolf M., Goetz, S.: Comeback!: a refactoring-based tool for binary-compatible frame-
work upgrade. Companion of the 30th international conference on Software engineering. ACM,
(2008)

[3] Kernighan, B. W., and Ritche, D. M.: The C programming language. Vol. 2. Englewood Cliffs:
prentice-Hall (1988)

[4] Stroustrup, B. The C++ Programming Language, 4th Edition. Addison-Wesley (2013)

[5] Welltype web page. http://baratharon.web.elte.hu/welltype/


